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　　　Motivation to 
use Parallelism in Embedded Systems
• Ever increasing demand for more compute power
• POWER consumption (battery life, cooling): 

1 processor at 1GHz uses twice the power of  
2 processors at 500MHz

• Required by using pre-existing modules
• Applications are suitable for parallel processing

• However, parallelism is never easy
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Parallelism has Many Forms

• From tightly integrated to loosely coupled
– Pipelining, VLIW, SIMD, Vector, Static Dataflow, MIMD, etc.

• Automatic or explicit parallelization
• Type of parallelism has great impact on required 

tool support, in particular the compiler



4

Architecture Characteristics
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Role of the Compiler
• The compiler maps parallelism from the application 

to the target architecture

Application

Compiler

Target
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Automatic
Parallelization is Not Always Possible

All applications

Applications that can be
parallelized manually

(Legacy) applications that
can be parallelized by
explicit annotations

Automatically parallelizable
sequential applications
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CoSy is:
• The world’s most advanced Compiler 

Development System

• Used by major 
corporations 
world-wide
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CoSy Qualities
• Compiler Generator System
• Modular design
• Configurable
• Retargetable
• Robust
• Extensible
• High Quality
• Highly optimising
• Build and supported by ACE
• Supported by Japan Novel in Japan 
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CoSy Structure
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CoSy 2003
• CoSy is a flexible compiler development 

environment for any architecture
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CoSy for
Pipelined RISC Architectures

• Memory load delay filling (Scheduler)
• Branch delay slot filling (Scheduler)
• Register allocation (RegAlloc)
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CoSy for
DSP Architectures

• Multiple memory loads (Scheduler)
• Post-increment addressing (Scheduler)
• Optimal usage of specialized registers (RegAlloc)
• Zero overhead loop support
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CoSy for VLIW Architectures

• Instruction packing with resource and latency model 
(Scheduler)

• Predicated execution
• Inlining
• Loop unrolling
• Software pipelining
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Software Pipelining Example
func:

save    %sp,-104,%sp
ld      [%i1+0],%f1
ld      [%i2+0],%f0

! --- cycle 1 --------------
add     %i1,4,%i1
add     %i2,4,%i2

! --- cycle 3 --------------
fmuls   %f0,%f1,%f2
add     %g0,9,%l5

.L1:
! --- cycle 0 --------------

ld      [%i1+0],%f1
ld      [%i2+0],%f0

! --- cycle 2 --------------
add     %i1,4,%i1
add     %i2,4,%i2

! --- cycle 3 --------------
st      %f2,[%i0+0]
fmuls   %f0,%f1,%f2
add     %i0,4,%i0
subcc   %l5,1,%l5
bne     .L1
nop

! --- cycle 0 --------------
st      %f2,[%i0+0]
add     %i0,4,%i0
ret

void
func(float * restrict p, float * q, float * r)
{

int i;

for (i = 0; i < 10; i++) {
*p++ = *q++ * *r++;

}
} func:

save    %sp,-104,%sp
add     %g0,10,%l5

.L1:
! --- cycle 0 --------------

ld      [%i2+0],%f0
ld      [%i1+0],%f1
add     %i2,4,%i2

! --- cycle 1 --------------
add     %i1,4,%i1

! --- cycle 3 --------------
fmuls   %f0,%f1,%f0

! --- cycle 7 --------------
st      %f0,[%i0+0]
add     %i0,4,%i0
subcc   %l5,1,%l5
bne     .L1
nop

! --- cycle 0 --------------
ret

SPARC
Loop

Before:
8 cycles

After:
4 cycles



15

CoSy for SIMD and Vector Processors

• Data dependence analysis
• Automatic vectorization (under development)
• Alignment analysis (for SIMD)
• Dynamic Intrinsic (compiler known functions) 

support with scheduling (also for FPGA)
• Compiler known types (e.g. XYZw, RGBa structures)
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CoSy for
Reconfigurable - Static Data Flow

Configurable
communication
paths

Programmable 
computational units
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Extracting 
the Stream Representation for SDF

• Works on nested loop programs
• Extract the Memory Input-Output commands
• Extract Data Flow Relation
• Create a synchronous Stream program

– Can be mapped to reconfigurable architecture
– Can be mapped to FPGA
– Can be mapped directly to hardware
– And also to vector/SIMD architectures
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Memory I/O Analysis

From Matrix multiply:
for (i=0;i<N;i++){
for (j=0;j<N;j++){
for (k=0;k<N;k++){
..  = .. a2[k][j] ..;

Translates to:
StreamInStream3( (int*)a2, N, 0,

N, 1,
N, N ) ;
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Example Array based DCT
for (block = 0; block < NBLOCKS; block++) {

for (y = 0; y < SIZE; y++) {
for (x = 0; x < SIZE; x++) {

Result[block][y][x] = 0;
for (v = 0; v < SIZE; v++) {

for (u = 0; u < SIZE; u++) {
int32 tmp;
int32 t1 = cosines[x][u];
int32 t2 = cosines[y][v]; 
tmp = MUL(t1, t2);
tmp = UNSCALE(tmp);
tmp = MUL(tmp, inData[block][v][u]);
Result[block][y][x] += tmp;

}   }
Result[block][y][x] = (Result[block][y][x] >> 2) + SCALE(128);
Result[block][y][x] = UNSCALE(Result[block][y][x]);
Result[block][y][x] = (Result[block][y][x]);
if (Result[block][y][x] > 255)

Result[block][y][x] = 255;
else if (Result[block][y][x] < 0)

Result[block][y][x] = 0;
}   }   }
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CoSy Generated Stream code for DCT
in0 = new in_stream(inData, stride(4,256), stride(8,0),

stride(8,0), stride(8,32), stride(8,4));
in1 = new in_stream(cosines, stride(4,0), stride(8,0),

stride(8,32), stride(8,0), stride(8,4));
in2 = new in_stream(cosines, stride(4,0), stride(8,32),

stride(8,0), stride(8,4));
calc0 = StreamMultiply(in1, in2)
calc1 = StreamAddition(calc0, 8192)
calc2 = StreamShiftright(calc1, 14)
calc3 = StreamMultiply(in0, calc2)
calc4 = StreamAccumulate(calc3, ?)
calc5 = StreamShiftright(calc4, 2)
calc6 = StreamAddition(calc5, 2097152)
calc7 = StreamAddition(calc6, 8192)
calc8 = StreamShiftright(calc7, 14)
calc9 = StreamSatCeiling(calc8, 255)
calc10 = StreamSatFloor(calc9, 0)
StreamOutStream(calc10, Result, stride(4,256), stride(8,32),

stride(8,4));   
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CoSy for SPMD architectures
• High Performance Fortran compiler front end to IR
• IR extensions for aggregate Array operations
• Generates data partitioning
• Generates communication stubs
• Generates program synchronization
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CoSy for MIMD
and Heterogeneous Multi-Processors

• Explicitly/pre-partitioned application
• Pragma steered compilation to multiple targets
• Unification of data models
• Emulation of missing functionality (like fixed point 

on RISC)
• Generation of communication stubs
• Subsuming OS functionality by Intrinsics (compiler 

known functions)
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CoSy Express for HW/SW co-design
• OEM product based on CoSy
• Pre-configured CoSy, requires data-model and code 

generator rules to generate compiler
• Includes optimizations, library instantiation, testing 

framework, …
⇒Allows for very rapid compiler generation (minutes)
⇒Ideal for embedding in HW/SW evaluation 

environment
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And CoSy Includes Much More…
• Front-ends for C-89, C-99, DSP-C, Embedded C, 

C++, Fortran, GNU extensions
• Dwarf2 debugging info generation
• Extensive loop optimization (with zero overhead 

loop support)
• Target configuration to the bit
• Emulator generation
• Example compiler and code generator to jump-start 

compiler development
• Calling convention and stack layout configurability
• …
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ACE
• Based in Amsterdam, the Netherlands
• 30 years young; 30 people company
• Fully dedicated to the CoSy compiler development 

system
• Licenses CoSy to companies worldwide to do their 

own compiler development
• Provides CoSy WITH support
• Represented by Japan Novel in Japan
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Japan Novel and CoSy
• Japan Novel is an exclusive agent in Japan for ACE
• Japan Novel provides a products and services to improve the 

quality of today’s complex embedded software
– Compiler evaluation services
– Automated test&evaluation system - Quality Commander
– C/C++ comformance test suites - PlumHall’s products 

• Compiler evaluation services provide a thorough testing of 
C/C++, Embedded－C, DSP-C compilers

• With it’s high reliability, CoSy compiler development system 
contributes to the embedded system development in Japan
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Go Parallel with CoSy!

ACE Associated Compiler Experts
Home of CoSy

the Compiler Development System
yo_sugi@jnovel.co.jp/marcel@ace.nl
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What you get ‘out-of-the-box’
• The CoSy Compiler Development System

– including many optimizations

– with code generator generator

• Example Compilers and Techniques

• SuperTest C/C++ Test and Validation Suite

• Standard C Libraries

• CADESE Version Management System

• CoSy Support Program
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