
Using the CoSy
Compiler Development System

for Parallelism in
Embedded
Processors

Marcel Beemster/Yoichi Sugiyama
ACE Associated Compiler Experts &

Japan Novel Corporation
contact: yo_sugi@jnovel.co.jp

Application

CoSy
Parallel

Architecture

2

　　　Motivation to
use Parallelism in Embedded Systems
• Ever increasing demand for more compute power
• POWER consumption (battery life, cooling):

1 processor at 1GHz uses twice the power of
2 processors at 500MHz

• Required by using pre-existing modules
• Applications are suitable for parallel processing

• However, parallelism is never easy

3

Parallelism has Many Forms

• From tightly integrated to loosely coupled
– Pipelining, VLIW, SIMD, Vector, Static Dataflow, MIMD, etc.

• Automatic or explicit parallelization
• Type of parallelism has great impact on required

tool support, in particular the compiler

4

Architecture Characteristics

Coarse Grained

MIMD
Heterogeneous

SPMD
HPF

Variable Homogeneous
Large Scale SIMD
Static Data flow
Vector

DSP
VLIW/ILP

(RISC)

Fine Grained

5

Role of the Compiler
• The compiler maps parallelism from the application

to the target architecture

Application

Compiler

Target

6

Automatic
Parallelization is Not Always Possible

All applications

Applications that can be
parallelized manually

(Legacy) applications that
can be parallelized by
explicit annotations

Automatically parallelizable
sequential applications

7

CoSy is:
• The world’s most advanced Compiler

Development System

• Used by major
corporations
world-wide

8

CoSy Qualities
• Compiler Generator System
• Modular design
• Configurable
• Retargetable
• Robust
• Extensible
• High Quality
• Highly optimising
• Build and supported by ACE
• Supported by Japan Novel in Japan

9

CoSy Structure

10

CoSy 2003
• CoSy is a flexible compiler development

environment for any architecture

CoSyCoSy

RISCRISCµCµC DSPDSP

.

VLIWVLIW

8051
.
.
.

8051 ARM
MIPS

.

.

.

TMS320C54x
StarCore

Teak
.
.

TriMedia
.
.
.

11

CoSy for
Pipelined RISC Architectures

• Memory load delay filling (Scheduler)
• Branch delay slot filling (Scheduler)
• Register allocation (RegAlloc)

12

CoSy for
DSP Architectures

• Multiple memory loads (Scheduler)
• Post-increment addressing (Scheduler)
• Optimal usage of specialized registers (RegAlloc)
• Zero overhead loop support

13

CoSy for VLIW Architectures

• Instruction packing with resource and latency model
(Scheduler)

• Predicated execution
• Inlining
• Loop unrolling
• Software pipelining

14

Software Pipelining Example
func:

save %sp,-104,%sp
ld [%i1+0],%f1
ld [%i2+0],%f0

! --- cycle 1 --------------
add %i1,4,%i1
add %i2,4,%i2

! --- cycle 3 --------------
fmuls %f0,%f1,%f2
add %g0,9,%l5

.L1:
! --- cycle 0 --------------

ld [%i1+0],%f1
ld [%i2+0],%f0

! --- cycle 2 --------------
add %i1,4,%i1
add %i2,4,%i2

! --- cycle 3 --------------
st %f2,[%i0+0]
fmuls %f0,%f1,%f2
add %i0,4,%i0
subcc %l5,1,%l5
bne .L1
nop

! --- cycle 0 --------------
st %f2,[%i0+0]
add %i0,4,%i0
ret

void
func(float * restrict p, float * q, float * r)
{

int i;

for (i = 0; i < 10; i++) {
*p++ = *q++ * *r++;

}
} func:

save %sp,-104,%sp
add %g0,10,%l5

.L1:
! --- cycle 0 --------------

ld [%i2+0],%f0
ld [%i1+0],%f1
add %i2,4,%i2

! --- cycle 1 --------------
add %i1,4,%i1

! --- cycle 3 --------------
fmuls %f0,%f1,%f0

! --- cycle 7 --------------
st %f0,[%i0+0]
add %i0,4,%i0
subcc %l5,1,%l5
bne .L1
nop

! --- cycle 0 --------------
ret

SPARC
Loop

Before:
8 cycles

After:
4 cycles

15

CoSy for SIMD and Vector Processors

• Data dependence analysis
• Automatic vectorization (under development)
• Alignment analysis (for SIMD)
• Dynamic Intrinsic (compiler known functions)

support with scheduling (also for FPGA)
• Compiler known types (e.g. XYZw, RGBa structures)

16

CoSy for
Reconfigurable - Static Data Flow

Configurable
communication
paths

Programmable
computational units

17

Extracting
the Stream Representation for SDF

• Works on nested loop programs
• Extract the Memory Input-Output commands
• Extract Data Flow Relation
• Create a synchronous Stream program

– Can be mapped to reconfigurable architecture
– Can be mapped to FPGA
– Can be mapped directly to hardware
– And also to vector/SIMD architectures

18

Memory I/O Analysis

From Matrix multiply:
for (i=0;i<N;i++){
for (j=0;j<N;j++){
for (k=0;k<N;k++){
.. = .. a2[k][j] ..;

Translates to:
StreamInStream3((int*)a2, N, 0,

N, 1,
N, N) ;

19

Example Array based DCT
for (block = 0; block < NBLOCKS; block++) {

for (y = 0; y < SIZE; y++) {
for (x = 0; x < SIZE; x++) {

Result[block][y][x] = 0;
for (v = 0; v < SIZE; v++) {

for (u = 0; u < SIZE; u++) {
int32 tmp;
int32 t1 = cosines[x][u];
int32 t2 = cosines[y][v];
tmp = MUL(t1, t2);
tmp = UNSCALE(tmp);
tmp = MUL(tmp, inData[block][v][u]);
Result[block][y][x] += tmp;

} }
Result[block][y][x] = (Result[block][y][x] >> 2) + SCALE(128);
Result[block][y][x] = UNSCALE(Result[block][y][x]);
Result[block][y][x] = (Result[block][y][x]);
if (Result[block][y][x] > 255)

Result[block][y][x] = 255;
else if (Result[block][y][x] < 0)

Result[block][y][x] = 0;
} } }

20

CoSy Generated Stream code for DCT
in0 = new in_stream(inData, stride(4,256), stride(8,0),

stride(8,0), stride(8,32), stride(8,4));
in1 = new in_stream(cosines, stride(4,0), stride(8,0),

stride(8,32), stride(8,0), stride(8,4));
in2 = new in_stream(cosines, stride(4,0), stride(8,32),

stride(8,0), stride(8,4));
calc0 = StreamMultiply(in1, in2)
calc1 = StreamAddition(calc0, 8192)
calc2 = StreamShiftright(calc1, 14)
calc3 = StreamMultiply(in0, calc2)
calc4 = StreamAccumulate(calc3, ?)
calc5 = StreamShiftright(calc4, 2)
calc6 = StreamAddition(calc5, 2097152)
calc7 = StreamAddition(calc6, 8192)
calc8 = StreamShiftright(calc7, 14)
calc9 = StreamSatCeiling(calc8, 255)
calc10 = StreamSatFloor(calc9, 0)
StreamOutStream(calc10, Result, stride(4,256), stride(8,32),

stride(8,4));

21

CoSy for SPMD architectures
• High Performance Fortran compiler front end to IR
• IR extensions for aggregate Array operations
• Generates data partitioning
• Generates communication stubs
• Generates program synchronization

22

CoSy for MIMD
and Heterogeneous Multi-Processors

• Explicitly/pre-partitioned application
• Pragma steered compilation to multiple targets
• Unification of data models
• Emulation of missing functionality (like fixed point

on RISC)
• Generation of communication stubs
• Subsuming OS functionality by Intrinsics (compiler

known functions)

23

CoSy Express for HW/SW co-design
• OEM product based on CoSy
• Pre-configured CoSy, requires data-model and code

generator rules to generate compiler
• Includes optimizations, library instantiation, testing

framework, …
⇒Allows for very rapid compiler generation (minutes)
⇒Ideal for embedding in HW/SW evaluation

environment

24

And CoSy Includes Much More…
• Front-ends for C-89, C-99, DSP-C, Embedded C,

C++, Fortran, GNU extensions
• Dwarf2 debugging info generation
• Extensive loop optimization (with zero overhead

loop support)
• Target configuration to the bit
• Emulator generation
• Example compiler and code generator to jump-start

compiler development
• Calling convention and stack layout configurability
• …

25

ACE
• Based in Amsterdam, the Netherlands
• 30 years young; 30 people company
• Fully dedicated to the CoSy compiler development

system
• Licenses CoSy to companies worldwide to do their

own compiler development
• Provides CoSy WITH support
• Represented by Japan Novel in Japan

26

Japan Novel and CoSy
• Japan Novel is an exclusive agent in Japan for ACE
• Japan Novel provides a products and services to improve the

quality of today’s complex embedded software
– Compiler evaluation services
– Automated test&evaluation system - Quality Commander
– C/C++ comformance test suites - PlumHall’s products

• Compiler evaluation services provide a thorough testing of
C/C++, Embedded－C, DSP-C compilers

• With it’s high reliability, CoSy compiler development system
contributes to the embedded system development in Japan

27

Go Parallel with CoSy!

ACE Associated Compiler Experts
Home of CoSy

the Compiler Development System
yo_sugi@jnovel.co.jp/marcel@ace.nl

28

What you get ‘out-of-the-box’
• The CoSy Compiler Development System

– including many optimizations

– with code generator generator

• Example Compilers and Techniques

• SuperTest C/C++ Test and Validation Suite

• Standard C Libraries

• CADESE Version Management System

• CoSy Support Program

	Using the CoSy Compiler Development System for Parallelism in
	Motivation to use Parallelism in Embedded Systems
	Parallelism has Many Forms
	Architecture Characteristics
	Role of the Compiler
	Automatic Parallelization is Not Always Possible
	CoSy is:
	CoSy Qualities
	CoSy Structure
	CoSy 2003
	CoSy for Pipelined RISC Architectures
	CoSy forDSP Architectures
	CoSy for VLIW Architectures
	CoSy for SIMD and Vector Processors
	CoSy for Reconfigurable - Static Data Flow
	Extracting the Stream Representation for SDF
	Memory I/O Analysis
	Example Array based DCT
	CoSy Generated Stream code for DCT
	CoSy for SPMD architectures
	CoSy for MIMDand Heterogeneous Multi-Processors
	CoSy Express for HW/SW co-design
	And CoSy Includes Much More…
	ACE
	Japan Novel and CoSy
	What you get ‘out-of-the-box’

